9月13日 邓圣福:Exact Theory of Three-Dimensional Multi-hump Gravity-Capillary Water Waves

来源:中国足球竞彩比分 时间:2020-09-05浏览:18设置


讲座题目:Exact Theory of Three-Dimensional Multi-hump Gravity-Capillary Water Waves

主讲人:邓圣福  教授

主持人:刘兴波  教授

开始来源:中国足球竞彩比分 时间:2020-09-13 10:00:00  结束来源:中国足球竞彩比分 时间:2020-09-13   11:00:00

讲座地址:腾讯会议  ID161 331 307

主办单位:数学科学学院

 

报告人简介:

       邓圣福, 华侨大学特聘教授,“闽江学者奖励计划”特聘教授,从事微分方程与动力系统理论及其在水波问题上的应用。先后主持国家自然科学面上基金2项、教育部留学回国人员科研启动基金、中国博士后科学基金、广东省自然科学基金、广东省“扬帆计划”引进紧缺拔尖人才项目等,并入选广东省高等学校“千百十人才培养工程”省级培养对象。在SIAM J. Math. Anal.NonlinearityJ. Differential EquationsPhysica DDiscr. Contin. Dynam. Systems AIMA J. Appl. Math.等国际重要学术期刊上发表论文30多篇。

 

报告内容:

The talk considers three-dimensional traveling   surface waves on water of finite depth under the forces of gravity and   surface tension using the exact governing equations, called Euler equations.

It has been shown that when two   non-dimensional constants b and \lambda, which are related to the surface   tension and wave speed, respectively, near a critical curve in (b, \lambda)-plane, the Euler equations have a three-dimensional solution that has a one-hump  at center approaching to   nonzero oscillations at infinity in the propagation direction and is periodic   in the transverse direction. Here, it is proved that in this case, the Euler equations have a three-dimensional two-hump solutions with similar properties. These two humps in the propagation direction are far apart and connected by small oscillations in the middle. This is the first rigorous study on three-dimensional multi-hump water waves. The essential part of   proof is to find appropriate  free constants so that two one-hump solutions can be glued together in the middle to form a two-hump solution.

 


返回原图
/